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We present a study of the attractive Hubbard model based on the dynamical mean-field theory (DMFT)
combined with the numerical renormalization group (NRG). For this study, the NRG method is extended to
deal with self-consistent solutions of effective impurity models with superconducting symmetry breaking. We
give details of this extension and validate our calculations with DMFT results with antiferromagnetic ordering.
We also present results for static and integrated quantities for different filling factors in the crossover from
weak to strong-coupling superfluidity. We study the evolution of the single-particle spectra throughout the
crossover regime. Although the DMFT does not include the interaction of the fermions with the Goldstone
mode, we find strong deviations from the mean-field theory in the intermediate and strong-coupling regimes. In
particular, we show that low-energy charge fluctuations induce a transfer of spectral weight from the Bogo-
liubov quasiparticles to a higher-energy incoherent hump.
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I. INTRODUCTION

The Hubbard model of locally interacting fermions plays
a fundamental role in the theory of condensed-matter physics
and has become a standard model to study correlated elec-
tronic behavior. In its repulsive version depending on inter-
action strength and doping, it displays magnetic instabilities
such as antiferromagnetism. However, there is also
evidence'~* that there is a parameter range where it possesses
a strong instability in the pairing channel to d-wave super-
conductivity (SC), which makes it a good candidate to de-
scribe many important aspects of the high-temperature super-
conductors. Its attractive counterpart (the model with an
onsite pairing term) has a simpler phase diagram, as the
ground state is an s-wave superconductor. At half filling, a
degenerate charge-ordered state can also occur. For electrons
in a solid, this model may seem inappropriate at first sight;
but one can think of the local attraction between the elec-
trons as mediated by a boson, for instance, a phonon or ex-
citon, where any form of retardation is neglected.5 Indeed,
the Bardeen, Cooper, and Schrieffer® (BCS) theory for super-
conductivity uses a similar model with instantaneous local
attraction albeit with an energy (Debye) cutoff. In ultracold
atom experiments,’ the interactions between the fermionic
atoms in an optical trap can be tuned by a Feshbach reso-
nance. For a broad resonance, there exists a regime where the
effective interaction is well described by a local attraction.
Superfluidity has been observed in such systems,’~'0 also in
the case where the fermions are confined to an optical
lattice.!!

When tuning the interaction in models of attractive fermi-
ons, such as the attractive Hubbard model, one has two lim-
iting cases: the weak-coupling BCS superfluidity and the
strong-coupling Bose-Einstein condensation (BEC) of pre-
formed pairs. The theoretical understanding which has been
developed over the years is that the properties, such as the
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order parameter A, and the transition temperature 7, to the
superfluid state, are connected by a smooth crossover, and
approximate interpolation schemes between these limits have
been devised.!>”!> Apart from its recent experimental realiza-
tion for ultracold atoms in an optical trap,’-!? there is experi-
mental evidence that this BCS-BEC crossover has also rel-
evance for  strong-coupling and  high-temperature
superconductors. It has been claimed that these supercon-
ductors display properties in certain parts of the phase dia-
gram, such as the pseudogap, that can be understood in terms
of pairs preformed above the transition temperature 7, in
contrast to the BCS picture, where the pairs no longer exist
above T,.>!6:17

Many aspects of the attractive Hubbard model have al-
ready been investigated.>'® However, the dynamic response
functions have received fairly little theoretical attention, and
it is the predictions for these quantities through the crossover
that will be the focus of the present paper. One particular
question concerns the fermionic excitations in the one-
particle spectral functions. These are dominated by sharp Bo-
goliubov excitations in the weak-coupling limit. However, at
strong coupling, when the fermions are bound to pairs, we
expect a decrease in the spectral weight carried by the Bo-
goliubov quasiparticles. In order to investigate in detail what
happens throughout the crossover, a suitable approach to cal-
culate dynamic quantities is required. In situations where the
momentum dependence of the self-energy is not so impor-
tant, such as in the Mott transition, the dynamical mean-field
theory (DMFT) has proven to be useful as local interactions
can be treated very accurately. A variety of methods such as
perturbation theory, quantum Monte Carlo, as well as exact
diagonalization (ED), and numerical renormalization group
(NRG) are commonly used to solve the associated effective
impurity model. Among these methods, the NRG is one of
the more suitable ones to calculate low-temperature spectral
functions. Since it was originally proposed by Wilson,!? it
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has been developed constantly over the years.”® The way of
calculating spectral functions has been given a solid basis by
the recent approach?!??> based on the complete basis set pro-
posed by Anders and Schiller.* So far the NRG has, how-
ever, not been applied to self-consistent DMFT calculations
with superconducting symmetry breaking. Here we will
show in detail how the method can be extended to this situ-
ation and present results for the spectral functions. Some of
the results have already been published in Ref. 24. DMFT
studies for the attractive Hubbard model based on other “im
purity solvers” have been carried out in the normal phase?>26
and in the broken-symmetry phase.'®?”28 There is also a re-
cent study in two dimensions with cellular DMFT.?°

Our paper is organized as follows. The model and DMFT-
NRG approach are described in Sec. II. For this calculation,
the DMFT-NRG approach has to be generalized to deal with
the case of a superconducting bath. This generalization is
described in detail in Sec. III. There is a mapping from the
negative U model to the positive one when the lattice is
bipartite. In the half-filled case, this mapping can be used to
check the results for superconductivity with earlier DMFT-
NRG calculations with antiferromagnetic (AFM) order. The
mapping and comparison of the results is given in Sec. IV. In
Sec. V we compare our results for static and integrated quan-
tities, such as the anomalous expectation value or superfluid
density, with results based on other approximations. Finally,
in Sec. VI, we present results for dynamic response func-
tions. We focus on the features in the one-electron spectral
density. Dynamic susceptibilities calculated with the method
described here have been reported in Ref. 24.

II. MODEL AND DMFT-NRG SETUP

The subject of this paper is a study of the attractive Hub-
bard model, which in the grand canonical formalism reads

H= E (tz/ i,0 ]O’+HC) /-LE nw'_UE annzl’ (l)

ij,o io

with the chemical potential w, the interaction strength U
>0, and the hopping parameters 1. ¢; , creates a fermion at
site i with spin o and n; ,=c; ,¢; 5 The present calculations
are confined to zero temperature; however, an extension to
finite temperature is possible. To study superconducting or-
der, we can include an explicit superconducting symmetry-
breaking term,

H,= A(s)cz [c}:jciu +H.c.], (2)
k

with an “external field” A%, In the superconducting case in
Nambu space, the Green’s function matrix is given by

<<Ck,T ;C—k,i»w )
<<Cjk,l ;C—k,L»w ’

where we use the notation for the zero-temperature-retarded
Green’s functions for two operators A,B, ((A;B)),:=
—ifdt6(t)e'“([A(r) ,B]) with the expectation value in the
ground state (...). Upon including Eq. (2), the noninteracting
Green’s function matrix Gg(w) has the form,

(exrich Mo

. 3
«Cik,l;c;q»w ( )

Gk(w) = (
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GO( -1 _ A?C 4
Gilw)™ = A° w+g) (4)

where & =¢g;—pu. For the interacting system, we introduce
the matrix self-energy 24(w) such that the inverse of the full
Green’s function matrix Gy(w) is given by the Dyson equa-
tion

Gi(@) ™" = Gp(o) ™ - Zy(w). (5)

We employ the dynamical mean-field theory to analyze the
model (1). As effective impurity model, we consider the at-
tractive Anderson impurity model in a superconducting me-
dium,

HSACnd = Himp + 2 ‘Skcl,o-ck,o + E Vk(c;c-,adtf + HC)
k.o k.o
- Ak[cch,TCik,l +Cp | Cp]- (6)
k

where Hip, =2 ,e,n,—Unn| with n,,:d;;dg and d,, is the fer-
mionic operator on the impurity site. g, V, and A, are pa-
rameters of the medium. For the model (6), the noninteract-
ing Green’s function matrix has the form,

Go(w)™' = wl, - g47— K(w). ()
K(w) is the generalized matrix hybridization for the medium,
with diagonal part

w+ &g
E sz—, (8)

Kll(w ( 2+ AI%)

and off-diagonal part,

Ky(w) =

EVk 2

( e+ A0 ©
For a self-consistent NRG calculation of an effective impu-
rity problem, one has to (i) calculate the effective impurity
model parameters Vj, &, and Ay in Eq. (6) from a given
input function K(w) and (ii) map Eq. (6) to the so-called
linear-chain Hamiltonian, to which the iterative diagonaliza-
tion of the NRG can be applied. Due to the symmetry break-
ing, the standard formulation?® needs to be extended. The
details of how this can be achieved are described in the next
section.
In the case with superconducting symmetry breaking, the
effective Weiss field is a 2X2 matrix Qal(t). The DMFT
self-consistency equation in this case reads®

G'(0) =G(@)" +3(w), (10)

with k-independent self-energy.?! Hence, we use the NRG to
solve the effective impurity problem for a given medium
K(w) and calculate 2 (w) as detailed in Appendix A 3. From
this we can obtain the diagonal local lattice Green’s function,
which for the superconducting case takes the form
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[ o)) + ¢)
Glw) = f e (@)= o1 4a(0) + 8] = Sor (@3 (@)
(11)

where py(e) is the density of states of the noninteracting
fermions and {(w)=w+pu-2(0) and GH(w)=w-p
—3,,(w). The off-diagonal part is given by

o [ po()51(w)
G )‘f P (@) = o0 + 8] - So(@3 (@)

(12)

We denote G,,=G, G,=G°" and G,(w)=G,(-w)*, and
Gy(w)=—G;,(—w)". These Green’s functions can be col-
lected into the matrix G. Having calculated the local Green’s
function G, the self-consistency Eq. (10) determines the new
effective Weiss field go (w). We take the impurity model in
the form (6) and identify Go(w)=Gy(w). Then from Eq. (7)
we obtain an equation for the effective-medium matrix K(w).
In the calculations with spontaneous superconducting order,
we will always consider the limit A .—0in Eq. (2), where a
solution with superconducting symmetry breaking will have
bath parameters A; # 0 in the effective impurity model (6).
In Sec. IV we compare the results of our extended method
with the ones from a well-known antiferromagnetic case in
order to gauge the quality of the new scheme.

III. EXTENSION OF THE NRG FORMALISM WITH
SUPERCONDUCTING SYMMETRY BREAKING

In this section, we give details for the extension of the
DMFT-NRG calculations with superconducting symmetry
breaking. We first outline how to extract the parameters of
the impurity model from the medium function. Then we dis-
cuss the mapping to the linear-chain Hamiltonian with details
in Appendix A 1. This is a generalization of the scheme for
the normal case.?’ In Appendix A 3, we describe the gener-
alization of the calculation of the self-energy via the higher-
order Green’s functions.

A. Parameters of the effective impurity model

In the self-consistent procedure, the parameters of the ef-
fective impurity model have to be determined from the input
functions of the medium K, and K,; [Egs. (8) and (9)]. We
start with the Hamiltonian in the form (6) and choose a dis-
cretization in the usual logarithmic way to intervals Iy, I
=(Xe1.X), I ==(x,,%,41), and x,=xoA™" characterized by
the parameter A >1 and x, is large enough to cover nonzero
spectral weight. Following the normal discretization steps’
retaining only the lowest Fourier component yields

H;:nd=Himp+ E g aanoﬂan ot E 73(a2,n,ado+H'C')

on,a o,a,n

- E ﬁ(az,nﬁa;n,l + aa,n,laa,n,T) . (13)

a,n

We outline a procedure to obtain the parameters &, v5, and
8. For the discretized model (13), we find similar equations
to Egs. (8) and (9),
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@ itE
Ky(z) = E ZF, (14)
a2
Ko (2) :2 ey (15)
with  E*=V¢?+6%. The imaginary parts A(w):=

—Im K, (w+in)/m and A°"(w):=-Im K,,(w+i7n)/m can be
written as sums of delta functions,

Aw) = > ¥ ul o -ED + vl Mo+ E],

n,a

AOff(w) = 2 ’yzzun,avn,a[é(w - Es) - 5((” + Eg)]’

where
1 & 1 g“)
2 n 2 n
=1+, =—{1-=1, 16
un,a 2 ( E:) vn,a 2 ( Eff ( )
with una i‘a=1. We define the spectral weights for the

delta function representation in the intervals I by

wn,a=f doA(w), Wn,a:f doA(w). (17)
Iy i

n

If we assume that E; € I} then the equations give for a=+,

P T T T (18)

=2
Wp+= 7;1 n+Vn+ + Y, Up Up s (1 9)

and similarly for a=—. This leads to three independent equa-
tions to determine the four sets of independent parameters
'yn , 'y; 7 b and u, _. Hence, we are free to choose one of
them, e.g., 7n =w,_,» from which follows directly yn =w
We are then left with the equations

n,—*

2 2 2
Wy =Wy =W v, )+ w,_(u, _-v, ), (20)

n,+(un,+

and
Wy =Wy Uy Uy + Wy Uy Uy (21)
Using the equality

2
(un,a

) =1-4u* v’ (22)

n,a” n,a’

we can derive a quadratic equation for d,, ,=u> ~v> , with
the solution

uv += [2W (
2 —2
X (Wn Wy~ 2Wn +) + 4wn W+

Wh W ]/[Wn +Wh, (W,, +Win— - 2w,

n,— n,+)

4
T W W ) W AW, Wy,

2
+w +4wn+wnJr

By definition, the parameters are then obtained from

= (u, .~ s JES. (23)

In the symmetric case, w, ,=w, _, this simplifies to

— [e3
8y =2u, 40, oEy,
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w w
2 2 _ n,+ _ Vn+
Uy = Ups = 1- 2 2un,+vn,+ = . (24)
Wn,+ n,+
such that
W W W2
_ nAt gt _ n,— y—  _ _ ntpa
5}:_ En’ n— En’ gn_a 1 2 En'
Wn,+ Wn - n+

Apart from the condition that it lies in the intervals I, E;' has
not been specified, but it is reasonable to take a value in the
middle of the intervals, i.e., ES=|x,+x,,;|/2>0. With this
choice, all parameters are specified numerically and the dis-
crete model is determined fully by the input functions. It can
be easily checked that this procedure simplifies to the stan-
dard procedure? in the case without superconducting sym-
metry breaking.

It is also useful to check that in the case of a mean-field
superconductor,>>3% the usual expressions for the impurity
parameters are recovered in this scheme. For simplicity, we
assume A<D in the following. Expression (A1l) for the
free impurity Green’s function for this model yields for the
medium functions analytically for |w|> A,

Lo
Aw) =—F—F—— 25
(@) VAL (25)
and
A
AMw) = —=—. 26
O 26

With the described procedure, one finds apart from a small
correction the standard results for & and ). In addition, we
obtain

(A-1)?
4

n

Sy = ASC<1 + + ) +O(A), (27)
where we used an expansion both in A, and (A—-1). Hence,
in the continuum limit, A — 1, §;=A, comes out correctly as
the constant mean-field gap parameter.

B. Mapping to the linear chain

The second important step (ii) in the self-consistent NRG
procedure is to map the discretized model (13) to the so-
called linear-chain model of the form,

N N
HAnd=Himp+ E snfz,afn,o"" E Bn(fz,afn+1,a+H~C')
o,n=0 o,n=—1
N
- 20 A+ Fuif): (28)

with f_; ,=d,, and B_, =&, with

&= (V2 + ). (29)

n

As usual, we define the localized state
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1 _
f0,0'= ?E (’yza+,n,a+ ’yna—,n,a')' (30)
Véo n

The orthogonal transformation between the two Hamilto-
nians needs to be more general than in the standard case
since with superconducting symmetry breaking we have su-
perpositions of particles and holes in the medium. We choose
the following ansatz for the transformation:

fn,T = E ua,nmaa,m,T - Ua,nmaz,m,l’ (31)
a,m
and
fjl,i = E Ua,nmaa,m,T + Ma,nmaz,m,l' (32)
a,m

We can now derive the recursion relations for the matrix
elements and the parameters. This is done in generalization
of the earlier work by Bulla ef al.* and the details are given
in Appendix A 1. We find for the parameters of the linear-
chain Hamiltonian (28)

En= 2 g;(ui,nm Ug, nm) + 2bﬂua nmV a,nm > (33)

E (u a, l’[lﬂ

a,m

Uy, nm) - Zgzua,nmva,nm’ (34)

and
2 2/ 2 2 2, 2 2
Bn = E g:’ (Ma,nn’ + va,nn’) + 5:11' (ua,nn’ + va,nn’)
n',a
2 2 2
_Sn_an—l_An' (35)

The recursion relations for the transformation matrix ele-
ments read as

Bnua,n+1n’ = (g,?f - 8n)ua,nn’ + ((ij + An)va,nn’ - :Bn—lua,n—ln’
(36)
and
ana,n+1n’ = (5:/ - An)l/‘cv,nn’ - (gs/ + gn)va,nn’ - Bn—lva,n—ln"
(37)

IV. COMPARISON WITH AFM-DMFT-NRG RESULTS

There is a canonical transformation which maps the at-
tractive Hubbard model with arbitrary chemical potential to a
half-filled repulsive model with a magnetic field,’

cf =", ol =bl,,

¢ =e1Ripl L cii=biy, (38)

with g such that ¢0%i changes sign from one sublattice to
another. At half filling, the respective states with broken
symmetry, SC, and AFM orders correspond directly to each
other. Hence, the quality of our method for the SC can be
tested with well-known DMFT results from the case with
AFM ordering 40
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The mapping can be applied to map the corresponding
effective impurity models of the two cases onto one another
and we give the details in Appendix B. Here we use the
mapping (38) to relate the dynamic response functions from
the AFM and the SC cases, and we focus on the integrated
spectral functions for the two calculations. In the antiferro-
magnetic case in the DMFT study, we usually use the A-B
sublattice basis Cf ,=(c} 4 o+ Chx.o)-

vty [Cenrricha e CCartiche o
G ()= i .
<<CB,k,T’CA,k,T>>w <<CB,k,T’CB,k,T>>a)

). (39)

where k is in the reduced Brillouin zone as we have doubled
the Wigner-Seitz cell in position space including two lattice
sites. The transformation from the attractive to the repulsive
model (38) yields

Ck,t — Cax,1 Y CoE S (40)

Ck,| — CIX,k,T - C;,k,w- (41)

Since we assume the Néel-type order, the quantities of the B
lattice are related to the A-type lattice with opposite spin. We
find

<<ck,T;C]t,T>>w = Gap11(@) +Gyp (0)+Gypy ()
+ GA’k’l’T(w).

The local lattice Green’s function for the antiferromagnetic
Green’s function is obtained by k summation over the re-
duced Brillouin zone 2 — [depy(e)/2,

fA, L(w)
gA,T(w)gA,l(w) -’
where {, (®)=w+u,~2, (). The off-diagonal elements

vanish as product of a symmetric and antisymmetric func-
tion,

Gu )= | demfe) @)

&
fA,T(w)gA,l(w) -&?

As a result, we can directly relate the diagonal local lattice
Green’s function G;;(w) of the superconducting system to
the sublattice Green’s functions of the antiferromagnetic sys-
tem,

1
GA,H(“)) = Ef d8p0(8) =0. (43)

G(w) = GA,T,T(“’) + GA,1,1(®)~ (44)
Similarly, one finds for the off-diagonal Green’s function,
Gi(w) =Gy 1 1(0) =Gy | (@), (45)

The antiferromagnetic order parameter A py=Umy, my
:%(nA,T—nA, 1) is therefore directly related to the supercon-
ducting order parameter A,,=U®D,

0
D =(cg 1c0,) = f dw[— lIm GOff(w)} . (46)
-0 7T

The results in this section are calculated with the Gaussian
density of states py(e)=e "’ O\ corresponding to an
infinite-dimensional hypercubic lattice. We define an effec-
tive bandwidth W=2D for this density of states via the point
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FIG. 1. (Color online) Comparison of the anomalous expecta-
tion value ® in the attractive model with the local magnetization my,
in the AFM-DMFT calculations for half filling.

at which py(D)=p,(0)/¢?, giving D=\2¢ corresponding to
the choice in Ref. 42. We take the value W=4.

In Fig. 1, we show the comparison of the anomalous ex-
pectation value ® (SC case) with the sublattice magnetiza-
tion m, (AFM case). We can see an excellent agreement of
the corresponding expectation values from the two different
calculations in all coupling regimes. In Fig. 2, we show the
comparison for the Green’s functions for U=1,3,6.

We can see that for the whole frequency range the overall
agreement of these spectral functions is good. In the weak-
coupling case U=1, differences can be seen in the height of
the quasiparticle peaks, which are sharper and higher in the
calculation with superconducting order. In contrast, at strong
coupling U=6, the peaks are a bit broader and not as high as
in the antiferromagnetic solution. It should be mentioned that
for large U, DMFT-ED calculations in the AFM state have
revealed spin polaron fine structure in the peaks.*’ These
have so far escaped NRG calculations with less resolution at
higher energy, but improved schemes might see this in the
future. Generally, the results convey the picture of a good
agreement for static and dynamic quantities for these two
different DMFT-NRG calculations.

V. RESULTS FOR STATIC AND INTEGRATED
QUANTITIES

Having tested the method at half filling, we discuss results
for different filling factors in this section. We present results
for static and integrated quantities obtained with the ex-
tended DMFT-NRG method. They can be compared to the
quantities obtained with DMFT calculations with other im-
purity solvers such as iterated perturbation theory (IPT) (Ref.
27) or ED.!® The semielliptic density of states with finite
bandwidth 2D was used for all the following calculations:

R —
pole)=—3 \D* - &2, (47)

with D=2t for the Hubbard model. r=1 sets the energy scale
in the following. All the results presented here are for 7=0.
For many of the calculations, we take the model at quarter
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FIG. 2. (Color online) Comparison of the spectral functions of SC-DMFT and AFM-DMFT calculations for U=1,3,6 (left to right) for

half filling.

filling (n=1/2) as a generic case to analyze. For the NRG
calculations, we use A=1.6 and we keep 1000 states at each
step. In the given units U,=2 is the critical interaction for the
bound-state formation in the two-body problem for the Bethe
lattice?” and can be referred to as unitarity in analogy to the
crossover terminology of the continuum system.

A starting point for an analysis of many quantities in the
BCS-BEC crossover in the attractive Hubbard model can be
MF theory.’ For a given U and filling factor n, the chemical
potential wyp and the order parameter A, \p=U®Pyr is de-
termined by the mean-field equations. The fermionic excita-
tions are given by Ep= \J'(sk—ﬁ)2+AfC’MF with &= pupp
+Un/2. At weak coupling, the MF equations give the typical
exponential behavior for @y, and for large U one finds

(48)

If @ is larger than the lower band energy (in our case —D=
—2) then the minimal excitation energy is Ay, yr and occurs
for e,=p, which usually applies for weak coupling. For
strong coupling and n==1, the minimal excitation energy is
also given by A yg, Which is on the order of U. However,
for low density n—0, Eq. (48) yields m——U/2, whereas
®yr and thus Ay yr are small. Once & has become smaller
than the lower band energy, the minimal excitation energy is
still on the order of U as EV, =\ ,L_L2+A§C’MF= U independent
of n. In the low-density strong-coupling limit, the excitation
gap is given by x which then corresponds to the energy of
the two-fermion bound state.
The mean-field spectral densities are given by

p,]g[F(a)) = u,%&(w - Eg) + v,zc5(w + Eg) , (49)

p,I:/[F’Off(w) — Mkvk[5(“’ — Eg) - 5((1) + E,?)], (50)

where ug=[1+(g,—)/Ey)/2, vy=1-u;. There are two

bands of quasiparticle excitations given by *EY with
weights u,% for particle-like and v,% for the hole-like excita-
tions with infinite lifetime.

A. Behavior of the chemical potential

In Fig. 3, we plot our DMFT results for the chemical
potential w as a function of U for different densities 7.

We can see that in all cases, the values tend to the mean-
field value of —U/2 for large U. The results are in agreement
with the ones reported by Garg et al.”” and as seen there also
to the MF values, which we did not include in the figure.

In the inset we show the quantity w—Un/2, which corre-
sponds to u in the mean-field theory. When the density is
low, e.g., n=0.15, it is seen to intersect with the lower band
edge —2 at intermediate interactions U==3.6. Hence, u plays
a role to determine the fermionic excitation spectrum as dis-
cussed before. If its value does not change much with tem-
perature and u—Un/2 remains smaller than —D then no
Fermi surface exists above T, and the system does not pos-
sess fermionic character anymore as fermions are bound to
composite pairs also above T,. For large U, u~-U/2 gives
the binding energy.

B. Anomalous expectation value

One of the characteristic quantities of the superconducting
state is the presence of a finite anomalous expectation value
®. In MF theory @ increases exponentially at weak cou-
pling. At strong coupling it only depends on the density n as
seen in Eq. (48). In the attractive Hubbard model, the T,
increases exponentially with U and then decreases at strong
coupling with #2/U due to the kinetic term for hopping of
fermionic pairs. This is captured in the DMFT calculation,

=%=n =1
-©-n =0.75
-—n=0.5

—+-n =0.25

-©-n=0.15
0 2

4
u
FIG. 3. (Color online) The chemical potential u as a function of

U for different filling factors n. The inset shows the quantity u
-Un/2.
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FIG. 4. (Color online) The anomalous expectation value @ as a
function of U for n=0.5. For comparison, we have included the
results from DMFT-IPT extracted from Ref. 27 and the dashed line
gives the result for Oy.

which investigates the transition temperature as a pairing in-
stability from the two-particle response function.”> We ex-
pect the anomalous expectation value ® in the strong-
coupling limit to be reduced from the mean-field value due
strong phase fluctuations. This is analogous to the reduction
in the antiferromagnetic order parameter in the Heisenberg
model by (transverse) spin waves. The latter is, however, not
captured within our DMFT calculations in the state with bro-
ken symmetry, and ® increases to a constant as in the mean-
field theory, as can be seen in Fig. 4 for quarter filling.

The order parameter Ay, pvpr=U®Ppyer can, however, be
interpreted as a high-energy scale for the pair formation
then.”> The DMFT results for ®pyr are obtained by the
integration of the off-diagonal Green’s function as in Eq.
(46) or the static expectation values calculated in the NRG
procedure; the results of which are in very good agreement.
MF and DMFT results show qualitatively a very similar
overall behavior. There is a substantial reduction in the value
through the quantum fluctuations included in the DMFT-
NRG result, which appear most pronounced in the interme-
diate coupling regime, near unitarity U.=2. However, also at
weak coupling there is already a correction to the mean-field
results. For instance, at U=0.7, we find @/ Pppypr=2.58.
This is comparable to the reduction found in the analysis of
Martin-Rodero and Flores** with the second-order perturba-
tion theory. Below U=0.5, the ordering scale is very small,
and we do not find a well-converged DMFT solution with
symmetry breaking any more. In Fig. 4, we have also in-
cluded the results obtained by the DMFT-IPT,>” which are
slightly larger but otherwise in good agreement with our
DMFT-NRG results.

C. Pair density

The ground state of the system is also characterized by the
double occupancy (nn) or average pair density. The double
occupancy multiplied by U gives the expectation value of the
potential energy. At weak-coupling, potential energy is
gained in the symmetry broken state; whereas at strong-
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=%=n =1
-©-n=0.75
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FIG. 5. (Color online) Average pair density (nyn) as a function
of U for a number of different filling factors.

coupling, kinetic-energy gain is usually responsible for Bose-
Einstein condensation. (nTn l> can be calculated directly from
NRG expectation values. In Fig. 5, it is plotted for different
filling factors for a range of interactions.

In the noninteracting limit, it is given by (1n/2)? since the
particles are uncorrelated and the probabilities n/2 to find a
particle with spin o are just multiplied. In the strong-
coupling limit, all particles are bound to pairs, and the pair
density is given by half the filling factor (nyn )=n/2. This
continuous crossover from the noninteracting to the strong-
coupling values can be seen for all densities with the most
visible change in the intermediate coupling regime occurring
around U,.=2.

D. Momentum distribution

On the mean-field level, the weight of the quasiparticle
peaks is given directly by the factors ui and v,% as seen in Eq.
(49). These factors also describe the momentum distribution
ny"=v}. The corresponding DMFT result for the momentum
distribution is given by the integral over the diagonal Green’s

function,

0
nsz do[-Tm Gi(w)]/7. (51)

—00

In Fig. 6, we plot the momentum distribution n, calculated
from Eq. (51) in comparison with the mean-field result for
n=0.5.

For small attraction (U=1), we can see that n; shows the
typical form known from the BCS theory dropping from one
to zero in a small range around g,=u—Un/2. Therefore,
some momentum states above wu—Un/2 are occupied but
only in a small region of the size of the order parameter.
When U is increased, the momentum distribution is spread
over a larger range. In the BEC limit, where the fermions are
tightly bound and therefore very localized in position space,
we expect the momentum distribution to be spread due to the
uncertainty principle. In all cases, the sum rule 1/NZ;n;
=n/2 is satisfied numerically within an accuracy of about
1%. There are visible quantitative deviations between MF
and DMFT results, but they are fairly small. Our results are
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FIG. 6. (Color online) The momentum distribution calculated
from the k-dependent Green’s function and compared with the MF
result n,llezv,zc (dotted lines) for n=0.5.

well comparable to the ones presented by Garg et al.”’

In the experiments in ultracold gases where the BCS-BEC
crossover is investigated, the momentum distribution can be
measured quite accurately. This has been studied also in
comparison with mean-field results by Regal et al.* Consid-
ering low densities for the lattice system and taking into
account that an additional broadening would occur at finite
temperature, a qualitative agreement of our results with the
experiment can be found.

E. Superfluid stiffness

For a system in a coherent superfluid state, another char-
acteristic quantity is the superfluid stiffness D;. It is a mea-
sure of the energy required to twist the phase of the conden-
sate and therefore related to the degree of phase coherence of
the superconducting state. Usually, it is proportional to the
superfluid density n,, which is experimentally accessible via
the penetration length. Toschi er al.'® investigated the rela-
tion between 7, and D; in the attractive Hubbard model and
found that a linear scaling relation, as in the Uemura plot,
holds at intermediate and strong coupling.

D, can be calculated either from the weight of the delta-
function in the optical conductivity or from the transverse
part of the current-current correlation function!® X Jl(q , ),

Dy=Dgi,— X;j j, (g — 0,w=0). (52)

The diamagnetic term Dy;, is essentially given by the kinetic
energy,

2
Dgja=- [—32 f degpo(er)exGili,), (53)

where G,(iw,) is the Matsubara Green’s function. In the
infinite-dimensional limit, x; .; reduces to the bubble of
normal and anomalous propagators.'®#*® From this and the
relation —d/ de[ py(er) V(er)1=poler)er and integration by
parts, one finds that the diamagnetic term cancels, which
yields'®
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FIG. 7. (Color online) The superfluid stiffness D, as calculated
from the off-diagonal Green’s function in Eq. (56) for n=0.5. The
dashed line gives the result for D,, when evaluated as in Eq. (57).

4 . .
Ds=[—32 f degpo(e) V(e G (iw,) G (iw,),  (54)

where V(Sk)=(4t2—8,2c)/3 for the Bethe lattice. We can use
the spectral representation,

off /s
G (iw,) = f dor P (55)

iw,—

and the Kramers-Kronig relations for the real and imaginary
parts of the Green’s function such that at zero temperature D,
takes the form,

8 ’ |
Dy=-— f derpoler) Vier) f do Im G (w)Re G*(w),
7T —00
(56)

where G,’c“’ff(w) is the retarded off-diagonal Green’s function
(5). We can evaluate the expression (56) using the mean-field
Green’s function in the form (50), which yields the some-
what simpler expression

P UiV
D=4 f depo(e) V(e o (57)
-D k

This expression can be evaluated in the limit U—0,
Ay—0 as uzvy/ E; goes to a delta function then, and hence
Ds—2py() V(i)

In Fig. 7, the superfluid stiffness D, calculated from Egq.
(56) is displayed as a function of U for quarter filling. The
dashed line shows the result as obtained from Eq. (57),
where the mean-field Green’s functions are used to evaluate
the integrals.

We can see that the results for D; of DMFT and MF
calculation do not deviate very much. The superfluid stiff-
ness is maximal in the BCS limit and decreases to smaller
values in the BEC limit. D, is proportional to the inverse of
the effective mass of the pairs mz~ U/f*> and therefore ex-
pected to decrease like 1/U. The system in this limit consists
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FIG. 8. (Color online) The spectral functions, imaginary, and real parts of the diagonal and off-diagonal self-energies plotted for U=2
(left) and U=4 (right) with »=0.2 and n=0.5. The dotted vertical line gives the peak position of the spectral function, which can be roughly

identified with E,.

of heavy weakly interacting bosons, with less phase coher-
ence. The results shown are in agreement with the ones re-
ported by Toschi et al.'®

Summarizing this section, we see that our DMFT-NRG
results for chemical-potential, static, and integrated proper-
ties at zero temperature are in good agreement with earlier
calculations based on different impurity solvers. In fact most
of the results are in good agreement with mean-field theory
and quantitative deviations due to the fluctuations included
in DMFT are not very large. One could therefore argue that
the main features are already fairly well described by the
simpler static mean-field treatment. In the next section, we
will turn to spectral quantities. In contrast, there certain fea-
tures such as the distinction of coherent and incoherent ex-
citations can only be described when we go beyond the
mean-field theory. Some of these extra features found in the
spectral resolution are lost again when considering integrated
quantities.

VI. SPECTRAL FUNCTIONS

In this section, we present our DMFT-NRG results for the
local spectral density p(w) and the k-resolved spectra,
pr(w)==Im Gi(w)/m, in the different parameter regimes.
Before discussing these results in detail and comparing them
with those of Garg et al.,>” we consider the different types of
approximations used in the IPT and NRG calculations. These
are relevant in assessing the two sets of results to arrive at a
clearer physical interpretation.

The approximation used in the IPT is in restricting the
calculation to the second-order diagram for the self-energy.
This is evaluated using the Hartree-Bogoliubov-corrected
propagator for the effective impurity. If this propagator has a
spectral density with a gap E, then the imaginary part of the
self-energy from this second-order scattering term can only
develop in the regime |w|>3E,. This threshold energy of
3E, corresponds to the minimum energy for a fermion above
the gap E, to emit a quasiparticle-quasihole pair excitation.
Therefore, in the IPT, the single-particle spectral functions
pr(w) have isolated delta-function peaks corresponding to
the Bogoliubov quasiparticle excitations with minimal en-

ergy E,, together with incoherent continuous spectrum for
lw|>3E,.

In applying the NRG approach to the effective impurity
problem, approximations arise in using a discrete spectrum
for the conduction-electron bath. The spectral functions are
calculated as Lehmann sums over delta-function peaks, the
positions of the peaks being deduced from the discrete many-
body energy levels, and their weighting from the correspond-
ing matrix elements. This is also the case for other methods
using numerical diagonalization such as the ED method. To
obtain a continuous spectral function, these delta-function
peaks have to be broadened appropriately, usually with a
lognormal function with parameter b.2° If the broadening is
too large certain features blur, if it is too small the spectral
functions has many spikes and is difficult to interpret. With
such a broadening procedure, it is difficult to resolve sharp
features such as a gap in the spectrum and hence an energy
E,. However, usually an estimate of the gap can be made
when the broadening is taken into account. For all the previ-
ous results on static and integrated quantities, we have used a
conventional broadening parameter b=0.5, and the results
for these quantities depend very little on the broadening. In
MF theory, ® increases exponentially at weak coupling. At
strong coupling it only depends on the density n as seen in
Eq. (48).

Another aspect of the NRG calculations that can lead to
some numerical uncertainty is in the way the self-energy is
calculated. In Eq. (A15), it is shown how the self-energy can
be calculated from the matrices of the Green’s function G
and the higher Green’s function F. If one is interested in the
values of w for which the imaginary part of the self-energy
vanishes then the whole expression in Eq. (A15) has to be
considered. As is well known for NRG calculations for the
Anderson impurity model,? the condition Im 2(0)=0 for the
Friedel sum rule can be reasonably well satisfied. However,
Im 3, is never exactly zero and numerical errors can often be
seen in small imaginary parts of the self-energy from this
procedure.

In Fig. 8, we present the NRG results for the local spectral
density p(w) and the real and imaginary parts for the diago-
nal and off-diagonal self-energies for U=2 and U=4. We see
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FIG. 9. (Color online) The imaginary part of the local charge
susceptibility for U=3,4,6 (b=00.2). We find strong excitations
corresponding to charge fluctuations there below the respective es-
timates of Eg20.5,0.9, 1.7.

that Im 3 and Im 2° are approximately zero for a certain
range of  for both cases. Im 2° is an antisymmetric func-
tion, which has peaks at similar positions as Im 3. Re 3°T is
a symmetric function which for large w tends to the value
A =U®D of the interacting system (46) and for small @ can
be interpreted as a renormalized gap.

In the weaker coupling case U=2, we find a trend similar
to the IPT in that Im 3 deviates appreciably from zero only
when |w|>3E,. This can be seen on closer inspection of the
top part of Fig. 8, where we estimate £,~0.25, and Im pX
>0 for roughly @>0.75 (the wiggles for smaller w are in-
terpreted as inaccuracies). This means that in the correspond-
ing spectrum for p(w), there are isolated quasiparticle peaks
and a continuous incoherent part in the spectrum for ||
>3E,. The widths of the quasiparticles peaks, however, will
not be precisely zero as in the IPT due to the very small
imaginary parts. In the spectrum for p(w) and U=2 shown in
Fig. 8, there is a sharp peak due to the quasiparticle excita-
tions in p(w) just above the gap (see also Fig. 1 in Ref. 24).
This quasiparticle band is very similar to the one based on
the IPT presented in Fig. 3 in Ref. 27. In the IPT case, there
is a square-root singularity at the gap edge which does not
appear in the NRG results due to the small imaginary part in
the self-energies.

This picture changes in the stronger coupling case U=4.
Here it can be seen that the imaginary parts of both the
diagonal and off-diagonal self-energies develop a pro-
nounced peak which falls within the region E,<|w|<3E,.
This leads to incoherent spectral weight in pg(w) for |w|
<3E,. This is a difference with the IPT results where the
imaginary parts of the self-energy are always zero for E,
<|w|< 3E, and, consequently, there is no incoherent part of
the spectrum for py(w) in the range |w| <3E,. An explanation
for this difference can be found by examining what happens
to the local dynamical charge susceptibility y.(w) as U in-
creases. Results for y.(w) for U=3,4,6 are shown Fig. 9.
The excitation gap A, in this spectrum can be seen to de-
crease significantly as U increases. In Ref. 24 it was found*’
that at strong coupling, A, decreases like ~7*/U. In the
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weak-coupling case A,~2E,, but for strong coupling E, in-
creases with U, while A, decreases. Therefore, the contribu-
tion to the self-energy arising from the scattering with charge
fluctuations can—for larger U—generate a finite imaginary
part of the self-energy for E, <|w|<3E,. The location of the
peak in Im 3, appears consistent with such an interpretation.
The same effect cannot arise from scattering with the spin
fluctuations, as these have a larger characteristic energy scale
(on the order of U). For a further discussion of the behavior
of the charge and spin gap, we refer to Ref. 24.

The development of the peak in the imaginary part of the
self-energy in the range |w| < 3E, leads to a dip in the local
spectral function p(w) for U=4 as can be seen in Fig. 8.
There is then a peak-dip-hump structure in p(w) for U=4
(see also Fig. 11). This feature has also been found in calcu-
lations for the attractive continuum model.*® This behavior is
not visible in the IPT calculations (cf. Fig. 3 in Ref. 27). The
most likely explanation is the restriction in the IPT to the
second-order diagram, which does not allow for any renor-
malization of the charge fluctuations.

We now consider the effect of increasing U in the quasi-
particle excitations which can be seen in the results for the
spectral function pg(w) for U=1 and U=4 for quarter filling
shown in Fig. 10. For both cases U=1 and U=4, we can see
a series of sharp quasiparticle peaks which are most narrow
in the region ;= u, which is also the point where the spec-
tral gap is minimal. In the latter case U=4 in addition, we
find the hump with incoherent spectral weight as discussed
earlier for p(w). We have also added arrows which indicate
the position of the quasiparticle peaks iEg in mean-field
theory (49), and the height gives the spectral weight. We can
see that they describe the position of the quasiparticle exci-
tation well for U=1. For the larger U case, the structure in
the spectral function is not so well captured by the single
quasiparticle peaks of the mean-field theory. The energy of
the quasiparticle excitations differs markedly from the mean-
field prediction and there is a significant transfer of spectral
weight to the incoherent hump, in particular, at high energy.
The quasiparticle band (weight and bandwidth) at low energy
is, however, captured on a qualitative level by the mean-field
theory. The quasiparticle peaks for p,(w) always have a finite
width since our self-energy is never strictly zero. One can
infer the bands from the poles of the Green’s function E; and
compare them with the mean-field bands *+ Ej. For the weak
coupling, they are in good agreement. Toward the BEC limit,
the effective mass mp of a boson pair is on the order U. This
is reflected in the smaller effective bandwidth for the case
U=4 (Fig. 10). The weight of the peaks in the full spectrum
pr(w) is in accordance with the height of the arrows for
pg(w). We can see that in the BCS limit (left), the weight in
the lower band decreases rapidly to zero near g;=; whereas
toward the BEC limit (right) it spreads over a much larger
region which corresponds to what has been observed for mo-
mentum distributions in Fig. 6.

In earlier work,?* the quasiparticle properties were ana-
lyzed in an expansion around the solutions Ej, of the equation
Re Gy (w=E;)™'=0. This led to the Lorentz-like quasiparticle
peak of the form
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FIG. 10. (Color online) The g;-resolved spectral functions py(w) for quarter filling in the BCS limit U=1 (left) and toward the BEC limit
U=4 (b=0.2) (right). The arrows show the delta-function peaks of the mean-field solution pg(w), where the height of the arrow indicates the

weight of the peak.

(w—Ep)*+ W(E)*

pi(@) = w,(Ey) (58)

with width W(E,) and weight w_(E;). When a standard
broadening of »=0.5 is used, one finds a finite width of the
peaks which increases in the crossover regime leading to a
strongly reduced lifetime of the quasiparticles. In the more
careful analysis here with smaller broadening and taking into
account possible errors in determining the self-energy, we
come to the conclusion that this is not generally correct. We
should not expect a finite imaginary part of the self-energy to
appear for o=E, in a DMFT calculation which does not
include collective modes.*’

Being aware of limitations in our numerical calculations,
we investigate in more detail how the one-particle spectra
near the minimal spectral gap modify from weak to interme-
diate coupling. Here we use a general scheme in which we
analyze the peaks in the spectral function directly numeri-
cally and estimate the transfer of weight from the quasipar-
ticle peaks to the incoherent part of the spectrum. We take
the peak position in p;(w) for a given g as the excitation
energy E;Y, the full width F., at half maximum as the
width, and the weight is determined by the integration over a
region around E;* of 2F ... Such an analysis also applies to
antisymmetric peak forms and is equivalent to the other one
for sharp Lorentz-like peaks. Note that a normalized Lorentz
peak with width A (half width at half maximum) integrated
—2A

We have done such an analysis for the g;-resolved spec-
tral functions, where we consider an g; such that the excita-
tion gap is minimal. The corresponding spectral functions for
U=1-4 are displayed in Fig. 11. We have included a line at
half maximum for the width as well as marked the integra-
tion area in the low-energy peak. We can see now very
clearly how the spectrum changes from one coherent quasi-
particle peak at weak coupling to the peak-dip-hump struc-
ture at intermediate coupling. This is similar to what was
found in the calculation for an attractive continuum model,*8
where a sharp quasiparticle peak with little weight is still
present at strong coupling. In our calculation, the strong-
coupling limit is not easy to analyze as we always have some
finite imaginary part of the self-energy leading to a finite
width of the quasiparticle peak, which is partly spurious and
tends to be larger at large coupling. At strong coupling, the
excitations occur at higher energy and we have to reduce the
broadening further, which leads to a more spiky spectrum. It
should be mentioned that if the broadening is chosen larger
(e.g., b=0.5) then there is only one broad peak in the spectral
function.

The estimate of the weight of the quasiparticle peak wy,q
extracted by the integration is plotted in Fig. 12 as a function
of U. For weak coupling U=1, we would expect the mean-
field result v,%(skz m)=0.5. Due to the reduced integration
range, we find wy,., = 0.34; but division by w,, gives a value
close to 0.5.

Coming from weak coupling, we find a decrease as spec-

from to 2A yields the spectral weight wsy tral weight is transferred to incoherent parts as seen before in
=2 arctan(2)/ w=0.705. Fig. 11. This resembles the results of Ref. 48.
100 —u= N —u=2 ° —U=3 35 —Uu=4
80 ’ 5 3
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FIG. 11. (Color online) The spectral functions pg(w) for an g, where the gap is minimal for quarter filling and U=1-4 (b=0.2). The

integration area, which gives the weight of the peaks, is shown.
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FIG. 12. The weight of the peak for spectral excitation as a
function of U for quarter filling.

As discussed before due to the uncertainty about the
imaginary part of the self-energy at low frequency, the be-
havior of the width F., cannot be reliably estimated. At
weak coupling, we expect the prediction of a real delta-
function with Fp.,u—0 to hold. Whether at strong-coupling
low enough excitations can be generated to change this re-
mains to be answered. We stress here again that the conclu-
sions about the behavior of W(min Ej,) as given in Eq. (58),
which was reported in Fig. 3 of Ref. 24, are found to be
incorrect as judged by the present more careful interpretation
of our DMFT-NRG calculations.

VII. CONCLUSIONS

In this paper, we have presented an analysis of the
ground-state properties of the attractive Hubbard model in
the symmetry broken phase in the BCS-BEC crossover. The
emphasis has been on the evolution of spectral functions in
the crossover regime. Our analysis is based on an extension
of the DMFT-NRG method to the case with superconducting
symmetry breaking. We have given many details of this ex-
tension in Sec. IIT and in Appendices A and B. At half filling,
we have related our approach both for the effective impurity
model and for the lattice quantities to earlier DMFT-NRG
calculations with antiferromagnetic symmetry breaking. A
good agreement has been found there, which validates the
applicability of our approach. As emphasized in Ref. 24,
apart from the attractive Hubbard model the extended
method can be useful to study superconductivity in other
models, such as the Hubbard-Holstein type, and also ques-
tions related to the microscopic description of magnetic im-
purities in superconductors, which require self-consistent
treatments.

We have discussed our DMFT-NRG results for static and
integrated quantities such as the anomalous expectation
value, the double occupancy, or superfluid stiffness. The re-
sults for these are in good agreement with earlier calculations
based on different impurity solvers, and it has been found
that most of the results are already obtained qualitatively
well on the mean-field level.

The main interest of this paper has been to study the fer-
mionic spectrum throughout the crossover regime. The local
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dynamics are very well described in our DMFT-NRG ap-
proach. We discussed how the behavior of the dynamic self-
energies changes when the interaction becomes larger. At
weak coupling, the spectrum is dominated by sharp symmet-
ric Bogoliubov quasiparticle peaks as known from the mean-
field theory. Contributions from particle-particle and particle-
hole fluctuations incorporated in the dynamic self-energies
appear at higher energy and are small, similar to those seen
in the IPT approach. However, when the local interaction is
in the unitary regime and larger, the imaginary part of the
dynamic self-energy shows a characteristic feature which
generates a peak-dip-hump structure in the spectral function.
We argued that this feature is likely to be generated by
charge fluctuations as seen in the local dynamic charge sus-
ceptibility. One finds that the spectral weight is transferred
into the incoherent parts (hump) of the spectrum in increas-
ing the coupling.

To answer the question whether at strong coupling the
fermionic quasiparticles acquire a finite width, one needs to
clarify over which region the imaginary parts of the self-
energies vanish. Unfortunately, our method, in which spec-
tral functions are obtained after broadening delta-peaks, is
not accurate enough at present to allow for definite state-
ments. It is possible that the peaks always remain sharp in
the limit of infinite dimensions. Our DMFT approach does
not capture spatial fluctuations and the gapless Goldstone
mode. It would also be of great interest to study how such
effects give a modification of the discussed fermionic
spectrum®®3! and possibly a suppression of the quasiparticle
peaks.
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APPENDIX A: NRG FORMALISM WITH
SUPERCONDUCTING SYMMETRY BREAKING

1. Mapping to the linear chain

The second important step (ii) in the self-consistent NRG
procedure is to map the discretized model (13) to the so-
called linear-chain model of the general form (28),

N

N
HAnd = E Snfj;,o:fl‘l,l)' + E ﬁn(fl,afnﬂ,a"" HC)

o,n=0 on=—1

N
- E An(fZ,Tsz,L"'fn,ifn,T)- (A1)

n=0

The orthogonal transformation has been chosen in the form
[cf. Eq. (31)],

(A2)

— T
fn,T - E Ma,nmaa,m,T - Ua,llmaa,m,l7
a,m

aa,m,T = 2 Ma,nmfn,T + va,n Z,l’ (A3)
n
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il T
fn,l = E va,nmaa,m,T + ua,nmaa,m,l’ (A4)
a,m
az,m,l = E - va,nmfn,T + Uan :;,i’ (AS)

n

The matrix elements of the transformation obey the relations

2 Uy nmUa! nm' + UanmPa’ nm' = 5m,m'5a,a”
n

E Uy nmUan'm + UanmVan'm= Onn'>
m,a

and

2 UgnmUan'm — VanmUan'm= O’

m,a

2 Uy nmV o’ nm’ — VanmUa’ nm' = 0’
n

which ensure that both operator sets satisfy canonical anti-
commutation relations. We can now derive the recursion re-
lations for the matrix elements and the parameters. This is
done in analogy to earlier work by Bulla et al.*® We equate
the representations for the media of Egs. (13) and (A1) and
substitute the operator transformations (A2)—(A5). One can
then read off the coefficients of the f, ; operators (n>0) on
both sides of the equation, which yields

+
E g:'(”a,nn’aa,n/j + Ua,nn’auz,n/,l)

n',a
;
+ 2 éj'(va,nn’aa,nfj - ua,nn'aa,n’,i)
n',a

_ i F i+

=eufyr + Buifnot 1+ Buf sty = Dufn)-
From this we find the expression (33) for g, by taking the
anticommutator with f,, ;. The anticommutator with fz’ | gives

the expression (34) for A,. With the representations
(A2)—(A5), we can modify Eq. (A6) to obtain

,an;-;.l,‘( = E [(6:/ - Sn)ua,nn’ + (5;1’ + An)va,nn’
n',a

¥
- Bn—lua,n—ln’]aa,n/ﬁ + 2 [(An - ﬁ/)ua,rm’

n/,a
+ (§:’ + Sn)va,nn’ + ﬁn—lva,n—ln’]aa,n’,l'
By comparison with Eq. (31), we can read off a recursion
relation for 1, in Eq. (36) and for v, .1, as in Eq. (37).

The recursion relation for S, is obtained from the anticom-
mutator of with f,,, ; which yields

2 2 2
an E (ua,n+]n’ + Ua,n+1n’)'
n',a

With the orthonormality relations and the definitions g, and
A,, we can find the expression in Eq. (35).
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2. Relevant Green’s functions

In this section. we briefly outline some details for the
calculations of the relevant Green’s functions and the self-
energy for completeness.?” For the Green’s functions, it is
convenient to work in Nambu space, CZ,: (d?,d l)’ with 2
X 2 matrices. The relevant retarded Green’s functions are
then

(dydby),, <<dT;dl>>w>
i, ) A

In the NRG approach, we calculate G; and G,; directly and
infer Gy (w)=-Gyi(-w)*, which follows from Gj(w)=
-G\ (-w) and fo’%adv(w):—GfﬁfZiv —w)* for fermionic op-
erators A, B. Similarly, we can find G,(w)=G,,(—w)". In the
derivation, one has to be careful and include a sign change
for up down-spin interchange in the corresponding operator
combination.

In the noninteracting case, we can deduce the d-site
Green’s function matrix of the model Hamiltonian (6) ex-
actly. To do so, we rewrite the superconducting term of the
medium H. by introducing the vector of operators and the
symmetric matrix

Ck»T Ex - Ak
C . ( )’ A . < )’
k Cik,i k - Ak — &

Then H,. can be written as

Gilw) =(Cy;Ch) = (

(A7)

Hsc = 2 CItAka' (AS)
k

The matrix Green’s function in the superconducting bath is
then given by gi(iw,)=(iw,l,—Ap) ™",

gk(ia)n)_l =iw,l,— g3+ Ay, (A9)
where 7; are Pauli matrices. It follows that
iw,l,+ g3 — AT

gk(iwn) _ 2 k'3 sc’l (AIO)

. N2 2 2\
(iw,)" = (e + Ap)
In the noninteracting case for 7=0, we have therefore

Gg(a))_1 =wl,— g7 — > V,2(7'3gk(iwn)7'3. (A11)
k

The local full Green’s function matrix G,(w)~" for the effec-
tive impurity model is given by the Dyson matrix equation

Gyw)™" =Gyl (w) - 2(w), (A12)

where X (w) is the self-energy matrix.

3. Self-energy using the higher F-Green’s function

As described by Bulla et al.,”” there is a method to calcu-
late the self-energy employing a higher F-Green’s function,
and it can also be used for the case with the superconducting
bath. The calculation taking into account all off-diagonal
terms yields the following matrix equation:
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Gi@) Gylw) - UF() =15, (A13)
with the matrix of higher Green’s functions F(w),
Fi (o) Fplo
=) 7)) )
Fr(0) Fyw)
We have introduced the matrix elements F, l(w)

—«dT"l,dT»w’ Fiy(w)= ((dﬂh dl>>w7 le(w)——«dlnmdﬂ)w,
and Fzz(wg——((dlm,dl» In the NRG, we calculate F,
and F,, and the others follow from F,(w)=—F,,(-w)" and
Fy(w)=F;(-w)*. We can define the self-energy matrix by

3 () = UF(0)Gylw)™". (A15)

The properties of the Green’s function and the higher
F-Green’s function lead to the relations X (w)=2,,(-w)*
and X,,(w)=-2,(-w)* for the self-energies. We can there-
fore calculate the diagonal self-energy > (w)=3,(w) and the
off-diagonal self-energy 2°(w)=3,,(w) and deduce the
other two matrix elements from them. With the relation
(A15) between G, F, and 2, the Dyson equation (A12) is
recovered from Eq. (A13). Therefore, once G and F are de-
termined from the Lehmann representation, the self-energy
can be calculated from Eq. (A15) and used in Eqgs. (10)—(12).

APPENDIX B: MAPPING OF AFM TO SC EFFECTIVE
IMPURITY MODEL

In the DMFT calculations with antiferromagnetic order-
ing, the effective impurity model can be given in the follow-
ing discrete form:

HAFM= E ég,oﬂjl,n,oﬂa,n,a-" E ’ysl,o'(az,n,o‘do'-'-H'C')’

n,a,o n,a,o

where we have omitted the impurity term. Notice that the
parameters are o dependent. In this model, the sublattice
magnetic order is taken to be in the z direction, whereas in
the model with superconducting symmetry breaking (13) it
corresponds to a transverse direction x or y. Therefore, we
first perform a rotation in spin space

1 1
aa,n,T"_/—(aa,n,T anl) Aan,| — /—( anT+aanl)
V2 V2
(B1)

and also for the d operators. This yields

HAFM_ 2 Lnaan oaano-" 2 V:(az,n,a'do'-'-H'c')

n,a,o n,a,o

— 2 FZ(aL’n’Taa’n’L + al,n,laa,ﬂ,T)

n,a

- 2 Wg(al,njdi + az’n’ldT + H.C.),
n,a

with
Lo it EL e et
n 2 ’ n 2 ’
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F’?= gn, - gn, i W’c:: yn, - yn, ) (BZ)

2 2
Then we do a particle- hole transformation for the down spin
similar to Eq. (38),

Aan,| = aia,n,l’ d — - dI- (B3)
This gives
Hppm = E Lg(al’n’Taa,n’T + a_a,,waia,n,l)
n,a
+2 V,‘f(aLMdT —a_gp,d]+Hc)
n,a

_EF

anTa—anl+a—anlaanT)

- 2 W;lql(_ az,n,TdI + a—a,n,ldT + HC)

n,a

So far we have made no assumption about the parameters
&, - and vy .. In the usual scheme, one has & =-¢ ., such
that L “=—L7. Hence, the second term in the first line is
identical to the standard form apart from an additional con-
stant, when we use the fermionic anticommutation rules. In
addition, &,=§; | is normally satisfied, such that F=0.
Therefore, the term in the third line, which looks like the one
for superconducting symmetry breaking, vanishes. We focus
on the half filling case where one additionally has y,f’T
= ﬁj So the other terms remain and one has a normal and an
anomalous hopping term,

Hapm = 2 Lya m(ﬂan(ﬁ‘ E Vg(ajy,n,u'da-*_H'C')

n,a,o n,a,o

+2 W,(a,,,d| +dya,, +Hc).
n,a
One can then do a Bogoliubov transformation,
(aa,n,T ) _ (un,a —Up, a)(ban T )
T - + ,
aa*"*l Un,a ban 1

to obtain the desired Hamiltonian Hy 4 in Eq. (13). The ma-
trix elements are determined by

(B4)

2 a2 o
2 o _Va oW —ValW

u, ,—U ————, Uy Una= . (B5)
a2 a2’ n,a¥n,a 2 a2
Vie+ W Vie+ W

n,a na

The parameters &,,v,, 8, in Eq. (13) are related to the ones
in HAFM by

Q. (¢3
73= \"Vn2 + an’

gﬁ = (ui,a - vi,a)Lg’ (B6)

6:: == un,avn,al‘::' (B7)

We compared the numerical values obtained from the proce-
dure described in Sec. III for the SC case with the ones from
earlier AFM calculations for half filling using the above re-
lations. A reasonable agreement for the two different calcu-
lations was found.

214518-14



DYNAMICAL MEAN-FIELD THEORY AND NUMERICAL...

I'C. J. Halboth and W. Metzner, Phys. Rev. Lett. 85, 5162 (2000).

2D. Zanchi and H. J. Schulz, Phys. Rev. B 61, 13609 (2000).

3C. Honerkamp, M. Salmhofer, N. Furukawa, and T. M. Rice,
Phys. Rev. B 63, 035109 (2001).

4M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke, Phys.
Rev. B 74, 024508 (2006).

SR. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys.
62, 113 (1990).

6J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. 108, 1175
(1957).

1. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

8M. Greiner, C. Regal, and D. Jin, Nature (London) 426, 537
(2003).

M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403
(2004).

10M. Zwierlein, J. Abo-Shaeer, A. Shirotzek, C. H. Schunck, and
W. Ketterle, Nature (London) 435, 1047 (2005).

13, K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner,
K. Xu, and W. Ketterle, Nature (London) 443, 961 (2006).

I2D. M. Eagles, Phys. Rev. 186, 456 (1969).

BA. I. Leggett, in Modern Trends in the Theory of Condensed
Martter, edited by A. Pekalski and R. Przystawa (Springer, Ber-
lin, 1980).

4P, Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195
(1985).

ISM. Randeria, in Bose-Einstein Condensation, edited by A. Grif-
fin, D. Snoke, and S. Strinagari (Cambridge University Press,
Cambridge, England, 1995).

16 A Toschi, M. Capone, and C. Castellani, Phys. Rev. B 72,
235118 (2005).

17Q. Chen, K. Levin, and J. Stajic, J. Low Temp. Phys. 32, 406
(2006).

¥N. Dupuis, Phys. Rev. B 70, 134502 (2004).

K. Wilson, Rev. Mod. Phys. 47, 773 (1975).

20R. Bulla, T. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395
(2008).

2IR. Peters, T. Pruschke, and F. B. Anders, Phys. Rev. B 74,
245114 (2006).

22 A Weichselbaum and J. von Delft, Phys. Rev. Lett. 99, 076402
(2007).

ZF. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801
(2005).

24J. Bauer and A. C. Hewson, Europhys. Lett. 85, 27001 (2009).

M. Keller, W. Metzner, and U. Schollwick, Phys. Rev. Lett. 86,
4612 (2001).

26M. Capone, C. Castellani, and M. Grilli, Phys. Rev. Lett. 88,

PHYSICAL REVIEW B 79, 214518 (2009)

126403 (2002).

2T A. Garg, H. R. Krishnamurthy, and M. Randeria, Phys. Rev. B
72, 024517 (2005).

28 A. Toschi, P. Barone, M. Capone, and C. Castellani, New J.
Phys. 7, 7 (2005).

2B. Kyung, A. Georges, and A.-M. S. Tremblay, Phys. Rev. B 74,
024501 (2006).

04, Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

3I'W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

32K. Satori, H. Shiba, O. Sakai, and Y. Shimizu, J. Phys. Soc. Ipn.
61, 3239 (1992).

30. Sakai, Y. Shimizu, H. Shiba, and K. Satori, J. Phys. Soc. Jpn.
62, 3181 (1993).

34T. Yoshioka and Y. Ohashi, J. Phys. Soc. Jpn. 69, 1812 (2000).

3M.-S. Choi, M. Lee, K. Kang, and W. Belzig, Phys. Rev. B 70,
020502(R) (2004).

A, Oguri, Y. Tanaka, and A. C. Hewson, J. Phys. Soc. Jpn. 73,
2494 (2004).

37]. Bauer, A. Oguri, and A. Hewson, J. Phys.: Condens. Matter
19, 486211 (2007).

3T, Hecht, A. Weichselbaum, J. von Delft, and R. Bulla, J. Phys.:
Condens. Matter 20, 275213 (2008).

9R. Bulla, T. Pruschke, and A. C. Hewson, J. Phys.: Condens.
Matter 9, 10463 (1997).

40R. Zitzler, T. Pruschke, and R. Bulla, Eur. Phys. J. B 27, 473
(2002).

413, Bauer and A. C. Hewson, Eur. Phys. J. B 57, 235 (2007).

42R. Bulla, Phys. Rev. Lett. 83, 136 (1999).

43G. Sangiovanni et al., Phys. Rev. B 73, 205121 (2006).

4 A. Martin-Rodero and F. Flores, Phys. Rev. B 45, 13008 (1992).

43C. A. Regal, M. Greiner, S. Giorgini, M. Holland, and D. S. Jin,
Phys. Rev. Lett. 95, 250404 (2005).

40T, Pruschke, D. L. Cox, and M. Jarrell, Phys. Rev. B 47, 3553
(1993).

4T These results are robust with respect to broadening as the exci-
tation can be seen directly in the raw data.

48P Pieri, L. Pisani, and G. C. Strinati, Phys. Rev. B 70, 094508
(2004).

YA feature of the infinite-dimensional model is that it does not
include a collective Goldstone mode. A coupling of the fermions
to the Goldstone mode in a more general model can lead to a
damping of low-energy quasiparticles.

S0K. Borejsza and N. Dupuis, Europhys. Lett. 63, 722 (2003).

SIK. Borejsza and N. Dupuis, Phys. Rev. B 69, 085119 (2004).

52R. Bulla, A. C. Hewson, and T. Pruschke, J. Phys.: Condens.
Matter 10, 8365 (1998).

214518-15



